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I.1 DERODUCTION

Chapter V of Volume I of this report describes the
MOSTAB modular stability derivative program in a general way, avoiding
technical details.

It 1s emphasized that the version of MOSTAB described here
(MOSTAB~B) does not include rotor stall or compressibility as a function
of azimuth. It is adequate for the approach conditions considered in
this report, but is not suitable for higher speeds, for which later
versions of MOSTAB should be employed.



I.2 PROBLEM DEFINITION AND NOTATION

LDefine a coordinate system x, y, z fixed to the mass
of a tlyins vehicles The exact location of x, y, 2 is chosen
tor convenicnce during the calculations of aerodynamic forces.
JOne convenient definition for the location of x, y, z on a single
rotor helicopter is:

(1) Origin at the intersection of the main rotor shaft
and the fuselage waterline,

() x axis lying in the vertical plane of symmetry and
parallel to the fuselage waterline,

Aircraft are essentially a combination of aerodynamic
and inertial elements, These elements may be classified generally
into four groups:

(1) Rotating airfoils (lifting rotors, propellers)
(2) Stationary airfoils (wings, empennage surfaces)
/) Body structures (fuselage, nacelles)
(L Momentum engines (turbojets, rockets)

Generally, each of these aerodynamic elements produces
a force and a moment, which sum (in a vectorial sense) with those
forces and moments produced by all other elements. The final sum
representc the total load that sustains flight and forces maneuvers.

Now consider an aircraft with N aerodynamic elements.
Det'ine a reference point for each element which is convenient for

lertermining loads produced by the element. Locate an axis system
Xgo Yo 7y at each element i, 1 = 1, 2¢<+N, such that the origin of

Kyo Ny Uy ir en-incident with the i'th element's reference point.
Fix Hie Voo ri -14ly to the mass of the element reference point,

and consYrain thls coordinate system to remain parallel to the
verall vehicle frame of reference, x,y,z.

The force and moment vector generated by each element,
i, and applied %o the rest of the aircraft can be represented by
the six-row column vector fi‘ The first three elements of f1 are

the force components (in Xy ¥ys 2 coordinates) applied to the

i
aircrat't by element i, The last three elements in fi represent

the components of the moment applied to the airframe by element i.

B,
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The coordinate system xi, Yir 2y has three transla-

tional and three rotational veloeity components vhich identity

the velocity of Xg9 Yy 74 with respcet to inertial space. Define
Vigr & six-elenent column vector whose first three rows reprecent
translational velocity components and last threce rows represent
rotational velocity components of the motion of Zys Yy Py in

inertial space. In an analogous manner, define Vaq 29 the velocity
of xi, Vyo 24 with respect to the alr in the viecinity of elemeni i.
Note that, in general, Vo4 and Vag nre different becuuse the zir ir

the viecinity of an aireraft is not still with respect to irnertial
space. Detalled discussion of' these air motions in deferred to w
later section.

An alrcraft 1is usually controlled by mechanical recon-
figuration of selected aerodynamic elements. Familiar measures of
the control configuration are alleron angle, elevator angle, throttle
setting, collective pitch setting, etc., To represent these control
variables, identify the M-row column vector c. Each element of c
represents a control setting. For the present consideration, the
order of the elements in ¢ is not relevant. Also, control co=-
ordinates which are not varied during a flight case under study
(e.g., flaps, throttle) may either be included in ¢, or may
be included elsewhere as physical constants of the system and
excluded from c.

The force and moment contributed by each element of an
alreraft are generally functions of the local aerodynamic environ-
ment, the flight control settings which affect the element, and
sometimes the lnertial velocity and acceleration of the element.
In terms of previously defined notation, this statement can be
expressed as a functional mathematical equation:

£y =8y (Vo Vagr Ppg0 © Kpp =1, 2)) (1
i = 1, 2’0001\3

where the dot denotes differentiation with respect to time
(element by element of in) and KJ, j =1, 2,+++« are physieal

constants of the particular element ( wing span, chord, etc.).



Construct the 6NX1 column vectors f, Vi ¥y

by simply stacking the 6X1 columns fi’ Vigr Vag? and in, one on

top of the other, starting at the top with i = 1, All N equations
represented by (1) can then be written as

and \'rI

f=f (v vy, ¥, 0 Ky J =1, 20000) (2)

The force column f represents all the force and moment
components produced by all elements of the flight vehicle in x,y,z
coordinates. Now define p as the 6X! column vector whose elements
are the three force and three moment components of the total aero-
dynamic loading on the aircraft. In conventional NACA notation,
the elements of p are X,Y,2,L,M,N. These elements define the load
on the aircraft at the origin of x,y,z in x,y,z coordinates.

If the x,y, s, coordl.ates of each element's reference
point are defined, a matrix L can be assembled which relates p to
f as follows:

p=Lf (3)

L is a 6X6N array, and is a function of vehicle geometry
only. Thus, p is a function of Vis Vas vI, c and an unspecified

number of physical constants.

Let s represent an aircraft's inertial -relocity
expressed in x,y,z coordinates. s is a 6X1 column vector made up
of three translational and three rotational velocity components.
These components have been represented by NACA airplane notation
as u,v,w,p,q,r. :

If the x,y,z coordinates of the reference point for
each vehicle element are defined, a 6NX6 array, G, can be assembled

such that

VI = Gs (u)

The matrix G 1is a constant array which depends only on
vehicle geometry. Thus,

v. =G 8 (5)

While no proof is given here, it 1s easy to show that

L-GT

el A ot ol A ——
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It has been stated earlier in this work that the
aerodynamic velocity of each vehicle element usually is not the
same as its spatial (inertial) velocity, because the air surrounding
a vehicle in flight is also moving in inertial space. Neglecting
atmospheric wind for the moment, this relative air motion is due
to the presence of the vehicle itself, Momentum considerations
reveal that aerodynamic forces can be produced by a body with
finite dimensions only if that bodyaccelerates the local air mass.
Thus, the forces produced by a vehlicle element cause the surrounding
air to develop velocity components relative to space, and these so-
called '"interference velocities" impinge not only on the element
causing the air motion, but also on other elements of the aircraft.
Of course, this velocity interference changes the airloads produced
by the other elements from the magnitudes and directions that would
be developed if the air mass were still in space. It might be said
that interference velocities couple the elements of a flight

vehicle aerodynamically.

Let w be the 6NX1 column vector defining the spatial .
motion of the local air at all of the element reference points.
Then

A=V W (6)
The vector w will generally be a function of the
airloads produced by all of the vehicle elements, the aerodynamic
velocities at all of the elements,and the control settings. Also,

certain unsteady aerodynamic effects can cause w to be a function
of VI and #I as well. The functional equation for w can be written

as follows:
w=w (f, Var Vs #I, ¢, Ky» E=1,2:") (7)

where K , = 1, 2+++-are physical constants of the aircraft.

Usually, w is the most difficult quantity to estimate
for a flight vehicle. At this point,it must be assumed that some
model is available to define the function 7. Analytic, empirical
or intuitive models (usually a combination of these three) must be
assembled to define w before the dymamics of any flight vehicle
cen be studied.

The equations presented above represent the general
force and moment consideration for the loading of an aircraft in
flight. Some form of pilot (human or automatic) produces the
column c¢. Solution of the dynumic equations of motion for the
vehicle produces the '"velocity state" of the vehicle expressed hv
the columns s and 4, This information, along with the definition

>



ot the vehiele's vhysical configuration,enables one to compute p,
throupgh almultaneous solution of Eqs. (2) « (7). Figure 1 shows
‘hese mathiematienl Interrelationships in schematic form.

The entire zet of Eqs., (2) « (7) can be represented
by she funetional expression.

p-p(s § ) (8)

This equation is invariably a complicated, nonlinear assemblage of
tunctions actually involving p implicitly. Suppose a solution to
(%) {8 known. of the form

pt = pt (St! ét’ ct) (9)

Let Ap, As, AS, and Ac Lle small perturbations of p,s,8,
and ¢ from their "trim" or '"quiescent" values Pys 8¢s ét’ and Cy.

Iv the A cuantities (perturbation quantities) are small, Eq.

/

Crean be written in the linear form

Ap-_-psz\s¢PéA§+PcAc (10)

The matrices P_ and P, are 6X6 arrays, and P, is a

61X array (where M is the number of control variables). In general,
the numerical values of Pi» Py and P, are functions of S ét and

£ Thus, the trim values for s, § and c must be specified before

nurerical values can be assigned to the eclements in the rectangular
arrays,

(o

The elerents of P, P, and Pc are conventionally called

"eslapility lerivatives", For example, in conventional NACA nota-
sion, the first element of Ap is the perturbation longitudinal
torce on the ajirveraft, AX, and the first element of As is the
versurbed loncituiinal spatial veloeity, Au., If all perturbation
element: in A:, AY and Ac are zero except for Au, then

AKX = P_(1,1) Au.

Dividing b A and taking the limit as A =0,

1im AX oX
A =0 ltu " Ps(1’ ) =N

The osher olements of the rectangular arrays can be defined
in an analoyous manner, as partial derivatives.

6




Linear analysic techniques can be uced to stud: the {ymarnic
motions of an alreraf* in fliyht, if the array: in (/) are nuwericadly
defined. (Linear forme of the dynamic equations of notlon ure ena
to derive, and neced not be considered here), The "stability derive-
tive problem" is tr determine Ps’ Pé and Tc, given Pas. (#) = (7,

1.3 TRIM

Before the stability derivative matrices can be determined,
a "trim" condition must be specified (i.e., the quiescent condi‘ion.
of velocity state and control, B ét and oy nuct be known).
Certain interrelationships among the variables s gr &, and e oare
stated in defining a '"stability derlvative case'". These inter-
relationships essentially provide functional equations which can ve
solved simultancously with Eqs. (2) = (7) to €et the unknowm

trim columns s, ét and ¢, . These "interrelationships' that

come with the specification of a particular "stability derivative
case" will be called ''constraints" on the variables in ! - [TV,

To make this concept of constraints clear, consider the
following example of a particular stability derivative problem
statement.

Find the stability derivatives for H-19 helicopter in steady
flight at a constant altitude of 5000 feet with true airspeed
(TAS) = 90 knots. The ship is trimmed with zero sidzslip angle.
Welght = W, cg coordinates = x,y,z with respect to a specific
coordinate system.

The statement constrains the variables in Egs. (2) - (7!
by specifying altitude, rate of climb (zero in this case) and air-
speed, ''Steady" is normally interpreted to mean that ét = 0, and zll

rotational velocities (last three elements of st) gre zero. Zero

sideslip angle concstrains the second row in st'to be zero. Certain
physical constants (weight and center-of-gravity position) which
vary during a flight, and from flight to flight, are also specified,
Enough information must be given in (he problem specification <o
that this information, together with simultaneous solution of
Egs. (2) = (7), will yield all elements of Sy ét and ¢ .

The more detailed presentation concerning trim whieh follow.
considers only the cases where ét = 0. Althourh the basic concept

of trim does not necessarily require this conditionm, éf = 0 in
almost all practical stability derivative problems.



The problem of finding the trim columns Sy and ct is solved

mechanically by a pilot when he trims his aircraft. The pilot's
assignment appears in a form similar to the H-19 example given
above, He adjusts his flight controls and certain other parameters
(e.g., vehicle attitude) available to him wuntil the specification
is met, He 1is essentially solving a set of simultaneous nonlinear
equations by lterating on his command over the vehicle until the

resulting flight condition converges to his assignment specification

(to within certain required accuracy).

The method used by a pilot to trim an alreraft suggests
the approach to be taken here for finding the trim columns 8¢ and

c Define the L-row column vector t, whose elements include all

£
of those parameters available for adjustment to trim an aircraft
(usually t has six rows), and include certain elerents of ¢ and
usually information assoclated with the trimmed altitude of the
vehicle in space. For example, the pilot of a pure helicopter
adjusts the following six items to trim his ship for level flight
with zero sldeslip angle.

(1) Collective pitch.

(2) Lateral cyclic pitch.

(3) Longitudinal cyclic pitch.,

(4) Tail rotor collective pitch.

(5) Pitch altitude (conventional notation 8).

(6) Roll altitude (conventional notation ¢).

In this case, four elements of ¢ and two vehicle attitude
angles are included in t. If the requirement was to trim the

vehicle to zero roll angle, sideslip angle, B, would be included
in t in lieu of ¢.

The trim control column, Cys is generally a function of t:

c, =c (t, known constraints, known constants) (11)

t

The six trim variables listed above indicate a l1=to=1
relationship between certain elements of c¢ and the corresponding
elements of t. This is not necessarily always the case. For
example, longitudinal stick position may be defined as one element
of t. In most helicopters, longitudinal stick position affects
both lateral and longitudinal cyclic pitch angles (i.e., two

8




elements of ¢)., Nonlinear expressions may relate elements of
¢ to elements of t (e.g., an aircraft may include nonlinear
mechanical couplings between pilot inputs and control variables).

The column st can be calculated from the constraints of the
problem and the specification of t:

8, =8, (t, known constraints) (12)

For example, the numerical values of the elements in the last
three rows of s will ususlly be specified by the problem statement.
The second element (sideslip velocity) will either be zero, or it
will be included in t. The usual specification of airspeed and
flight path angle will allow calculation of the first and third
row elements of 8y from the cltitude rate equation. The solution

will normally be a function of the vehicle attitude variables in t.

From the definition of % outlined above, one sees that ct(t)
and st(t) can be directly calculated as soon as a numerical value
for t is available. With the statement that & ~ =0, simultaneous

solution of Eqs. (2) = (7) will eventually lead to the solution
of p. This process is represented by the functional expression,

p =p (t, stability derivative problem constraints,
physical constants) (12)

The unique value of t required to trim an aircraft must be determined
from EQ. (12) and the stability derivative problem statement.

The problem statement must require a specific value for p. This
"prequired" p column can be equated to the p column shown in 13),

to yield an L-row vector equation with t as its only unknown.
Remember that t itself has L-rows. This process produces L
(generally nonlinear ) equations in L unknowns (elements of t).

Let r be the "required" trim value for p; r will generally
come from the six equations of motion for the aircraft, as constrained,
by the stability derivative problem statement. Since t usually
contains elements related to vehicle attitude, and since the equations
of motion for a flying vehicle contain terms dependent on attitude,

r is generally a function of t.

r = r (t, problem constraints, constants) (14)

The trimming problem, in terms of the functional expressions
now available, can be stated very simply: Find t such that

p(t) = r(t).



Buzerical Solution for the Trimmed Condition (Trim Iteration)
In provious sections,certain functional expressions were

presented,  These oxpressions are summarized below for convenience.,

They retain thelr original statement numbers. Indication that

some of the expressions rely on constants known to the trim problem

is dropped. The vector 01 is also dropped, since it will be zero

for all trim cases considered using MOSTAB. The subseript, t,
indicating the trim condition in some of the previous expressions
of these equations, is dropped.

£ sf (VI, Var c) (2)

p =Lf (3)

vI -GS (l')

VA =VI - W (6)

W o=W (?, Vysr Vs ©) (7

c = C(t) (1‘)

S = S(t) (12) ;
r = l‘(t) (1“)

[t is assuned that explicit relationships of the forms shown
above are available to the trim problem (i.e., a numerical value
t'ar the left hand side of each expression can be determined 1if
mumerical values for the variables in the arguments are defined).

2as. (), (%) ant (6) are always linear (constant L and
i'e  The othera are generally nonlinear. Note that, even if t
i Inown, v eannot be explicitly determined because of the non-
linear invelvarsns of f and w in Eqs. (2 - (7).

pstimate e value of t that will trim the aireraft within
the t'ramework of the constraints given to the stability derivative
problem, Alco estimate w, Denote these estimated columns as te ’

i ow . Cleine Shiece ostimates, ealculate the following quantities:

10
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Q
"
n
—~
c*
o

o
S, =8 (t.e) (v
Yio * Gs B
Yao V1o T Ve s
1‘0 =f (vIo’ Vao? co) {1
Yo =V (fo’ "r0? V1o* %o’ G
r =r (te) (i1
t, =t (or

Let the difference between the correct value (the courht trim
solution value) of each variable and the subzero value be dencted
by A (variable)., For example, iff t is the true value of f for

the trimmed aircraft, then

Af-ft-fo

and so on for all of the other variables. If the A quantities are
small, the nonlinear Egs. (2), (7), (11), (12), and (1&) micht
be suitably represented in the following linearized forms:

2)L f = fo + FVIAVI + rVA AvA + FC Ac

7)L w=w°+wFAf+HVAAVA+WVIAVI+WCAP
11)L ¢ =e + Cpat

12)L § - 8+ S'l‘ Ot

1h)L ror +R,At

The rectangular arrays, shown above as upper case letterc,
can be assumed constants if the A quantities are small. Thecse
arrays are functions of the original estimates t. and w_, and are

easily calculated from Egs. (2), (7), (11), (1&), and (1.) usin- =n
digital computer.
1"



The procedure for finding a trim solution now becomes that
of solving a set of linear equations for At and Aw.

Combining Eqs. (4), (6) and (‘2)1.’

v

A .G(co+8rAt)-(w°+AI) (23)

Subtracting (18) from (23), using (17) to eliminate Vio» O0€

gets
&v, = GS, At - (vo - 'e) -l (2%)
Eqs. (), (2);, (T)y, (1), (12),, and (24) can be combined
to get Av, as a function of (wo - v‘) and At, (Note that (vo - 'e)

is not the same as Aw. This quantity is known at this point, since
v, vas computed as Eq. 20) The resulting equation for AvA is*

by, = v,r at - v (\vo - v.) (25)
wvhere
-1
Vg = (1 eV Ry ¢ W,) (26)
and

Vy =V, [(1 - Wy Fyp - o) GBy - (WPt W) cT]
(21)

Noting that
&vy = G Sy At (28)
from Eqs. (4) and (12)L, EQs. (2)1;’ (")L’ (25), and
(28) can be combined to yield

f =t +F ot -F (v -v) (29)

*The notation 1 refers to the "unit™ array: elements with equal
subscripts are unity and all others are zero.

12



where

Fp = Fyp GSp + Fy, Vo + Fo Cp (30)
and
Fy=Fa 'y (51)

Combining (29) and (3),

P =Lf +LF, At - LF, (wo - "'e) (22)

Equating (1h)L to (32) = the requirement for trim - and
solving for At,
at = (Ry - TFy) [Lfo - r - LE, (v, - we)] (32)

This value for At can be substituted into (25) to get Av

A
and into(29) to get Af. These results can be substituted into
Eqs. (7)1.’ (ll)L and (28) to get Aw:

At this point, new estimates on t and w can be made:

telnew =t + At (34)

"elnew AR (35)

These new estimates on t and w can be used to repeat the

process again., The cycling can occur as often as time permits,
until the differences between the old and new estimates for te and

w, are within some acceptably small values, The chosen '"'accept-

ability limits' should be based on the physical dimensions of the
elements of w and t. One test procedure could be

> =
(acceptable tolerance on t) 2> EI e new = te old' (36)
all elements of t
> -
(acceptable tolerance on w) ZIwe new - Ve ol dl

all elements of w

15



Discussion of the Trim Search Iteraticn

While considering any numerical iteration process, the
question of convergence arises. This question will not be treated
with any mathematical approach here, The comments to be extended
are quite intuitive,

Whether or not the trim solution method outlined in the
previous section converges to a solution seems to depend on
two factors:

(a) The nature of the specific nonlinear functions used
to represent the aircraft's characteristiecs,

(b) The correctness of the original estimates, te and W

Certainly, the degree of nonlinearity characterized by
the aircraft's aerodynamic functions will affect the rapidity of
convergence, or indeed whether convergence occurs at all, If all
of the aerodynamic expressions are completely linear, convergence
to the exact trim solution will occur with only one cyc.e. On the
other hand, if the problem statement assigns a trim condition
within a flight regime unattainable by the aircraft, no trim solu-
tion can exist. Hopefully, the iteration search will indicate
this by faillng to find a solution.

For those "difticult" regions in which a trim solution does
exist, but may not be found by the iteration process, a more
sophisticated iteration method may be required, One such method
may be simply to add some of the higher order ( nonlinear ) terms
to be the '"first term only" Taylor expansions (2)L, (7)L, (11)L,

and (1L)L.

justified, if the solution can be found by invoking engineering
judgement to produce better initial estimates, The first-order
convergence method proposed here always must converge on a solution
if the initial guess is close enough.

The additional complexity of this approach may not be

The idea that the accuracy of che initial estimates might
affect convergence provokes one to consider a method for ' sneaking
up' on that "difficult" solution. This approach would proceed
as follows:

(a) Begin by finding a solution for trim in a nearby region
to that in which convergence has been found difficult.

(b) Progressively change the problem statement toward that
statement representing the difficult region. For each
step, compute a trim solution and use this solution as

the initial estimate for the solutien of the next step.
14



If the convergence technique becomes too time consuming,
certain simple changes in approach might be attempted to shorten
the computational time required., For example: the rectargular
arrays in the linearized Eqs. (2)L, (7)L, (II)L, (12)L, and (14) are

recomputed during each iteration cycle for the iteration approach
suggested in the previous section. It may not be necessary to do
this every cycle. Computing new arrays every M cycles (M > 1)

may save time but will not affect the ability of the method to
converge on a solution.

To see how this abbreviated method works consider Figure 2.
Let Vg be the required solution-value for y. The problem is to

find Xg Estimate Xy 88 the solution. Compute Yo and the gradiemt

(slope), s. (The slope, s, in this example, is analogous to the
linear arrays in vector expressions (2)L, (7)L, etc.) Using s, and

lthe known error Yg = Yoo determine x, as the next proposed

1
solution. Continue this process, but use the same slope value
each time, As one sees from this figure,the iteration is con-
verging on the solution, even though s is held constant.

Whether or not this abbreviated method shortens convergence
time depends on the complexity of the aerodynamic expressions -
particularly f and w. The linear arrays are computed, numerically,
column by column. Every time a column is generated in Fc, for

example, values for the elements in f must be calculated. If this
calculation is even moderately time=consuming, finding the numerical
values for the arrays will be very time-consuming. In this case,
the iteration process can probably be accelerated using the
abbreviated method.

I STABILITY DERIVATIVE CALCULATION

The linearized expression derived in the trim solution can
be used to generate the stability derivative matrices, The terms
For A&I and Wy, AWI must be added to Egs, (2)L and (7)L, respec-

tively, toaccount for the dependency of f and w on *I' Recollect

that these terms were not required for the trim case, because non-
zero 8 trim cases were not considered.
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AS terms, the following expression is derived:

o = L [FVI + By V (1= W B - WVI)] G:As
+ L [F\.,I - By, Vi (W By + va)] G;

+ 1L [FC - By, Yy (4 B + wc)] }Ac

Comparing (38) to (10) shows that the factors in braces are

the required stability derivative arrays.

I.5 ROTORS WITH FLEXIBLE BLADES

In previous sections, it has been assumed that the forces
generated by all N vehicle components can be represented by a
model having the form

£, = £, (in, Vagr V140 © KJ’ J =1, 2,0e00s)

181’ 2, """ N (1)

Given the columns Vi4) vAi’ in, and ¢ (along with the
physical constants), Eq. (1) can be used to calculate £, This

equation is not intended to represent dynamic interfacing between
f, and its functional argument. Eq. (1) is purely a static relation-

ship.

Most vehicle elements have independent dynamic characteristics.
Lifting surfaces and bodies have structural vibration modes. Engines
have lags and high frequency oscillatory characteristics. Usually,
these dynamic effects can either be neglected because they involve
frequency ranges far removed from those of interest for flight
dynamics considerations, or they can be included in some simple
peripheral manner (e.g., a simple lag on throttle command might be
used to represent engine dynamics). In the special case of rotors
with flexible blades, the dynamics of the blades must be considered,
because blade motion has an extremely important influence on
flight dynamics,

To say that blade dynamics have an important influence on
flight dynamics does not imply that a static function (1) cannot be
defined for a rotor with flexible blades. The function (1) is
called a ''quasi-static" representation when applied to a rotor
with flexible blades. In such a quasi-static representation, f1

16
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is still defined as a static function of the argument (i.e., no
dynamic characteristics are included in the transfer function
f, = £, (arg)). However, the dynamic motions of the blades are

included in that they affect the actual static value of fi in

a substantial manner,

In reality, time should be included in the argument of (1)
when applied to the flexible rotor. However, such dynamic effects
usually have little influence on vehicle flight dynamies. If
special rotor structural dynamics are being studied (i.e., flutter,
vibrations and some mechanical stability augmentation schemes),
the quasi-static assunption (1) 1is not appropriate, and rotor
dynamics must be considered.

Blade motion equations, written in a coordinate system
fixed to the rotation hub, generally sppear in the following form:

BJ =g J=ly 2, (39)

where B p is the coordinate of the blade's j'th degree-of-freedom,

(Flexibie blades have an infinite number of degrees-of-freedom,
as expressed by Eq. (3). The driving function CH usually

contains coordinates of all blade degrees-of-freedom, and time
functions known to the blade motion problem. This functional
dependency of g 3 can be expressed in the form

8.1 'SJ (51]:"]'1: 2y 300w, Bn;ﬂ'1) 2y 3,00, y, t, Kﬂy ] '1:(2“.'0‘)'>

where | 1s rotor blade azimuth position and K2 are physical constants

associated with the blade. Note that ¢ is a function of time, as
are the columns Vigr Vago in’ and c,

Each rotor blade applies a force and a moment to the rotating
hub, This phenaena can be represented in the form

frk.frk (Bn"f]'1’2: 3"'“:Bn’ﬂ'1) 2y 3yecemy 4, t, Koyr=1, 2...)
(41)

k = 1, 2...total number of rotor blades.
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f‘r is a 0OX1 column vector containing three force and three

k
moment components which represent the loads applied by the k'th
blade to the rotating hub. These components are stated in terms
of some convenient frame-of-reference fixed to the rotating hub.

The rotating forces, fr s can be summed over all the rotor
k

blades, transformed to the nonrotating airframe through some
y-dependent transformation matrix, and time averaged. The result

is fiz
T |
f1=-;-/ [R W Y« ]dt (b2)
o all 'k
blades i

Although Vigr Vag? V140 and ¢ are generally functions of {

time, they can be considered constant while deriving the quasi- I
static rotor model (1). In this special case, the t can be removed

from the arguments of Eqs, (40) and (41). Also, since the

rotor 1s being treated as a quasi-static entiry, the degrees-of-

freedom associated with the Hlades can be assumed periodic over

the period 2x/0, where 0 is the constant rotor spin rate.

v =0t (¥3)

Because t has been removed from the arguments in Eqs. (40)
and (41), and because the blade degrees=of=-freedom move periodi=
cally with 2x/0 (which means over the azimuth angle 0 £ y < 2x),
Eq. (42) can be expressed in the azimutheaverage form:

en
o =-é—2./o‘ R (v) £, dy (b )

where b 1s the total number of blades and fr is fr for any
k
blade, Form (44) is possible because the motion is periodie., Thus,
all blades move in exactly the same way over one complete revolution.

Any practical solution of the blade motion problem requires
one to consider only a finite number of blade degrees-of-freedom.
In almost all case:s, only one degree-of -freedom needs to be consid-

ered.
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For the present development, suppose M degrees-of-freedom
are chosen to represent the flexible rotor blade. Define the
blade state column q as MX1 column vector assembled from the
B;] coordinates as follows:

q=} (45)

e -l

The g column is MX1 vector composed of all of the g

forcing functions, assembled analogously to Eq. (45). With
this notation, Egs. (39) and (40) can be written in the compact
form (dropping reference to the physical constants):

3 =g (q, 4, v) (46)

Generally, this equation must be solved numerically
because of the difficulties that arise when one attempts to expand
g. Classically, certain assumptions are made concerning the
blade's aerodynamic characteristics. The g column is expanded, and
the q and § dependent terms are transposed to the left side of (46).
Further assumptions allow a Fourier series approach to be applie
cable to the resulting linear differential equation in time varying
coefficients, until a closed form solution for q (t) is reached.

This approach is not necessary when numerical techniques
can be employed. The classical approach also becomes seriously
restrictive when special nonlinear rotor phenomena are being
studied.

A cguvenient state variable notation can be defined for
the q and q columns, Define the 2MX1 column vector {:

¢ =(g) (47)

To determine the blade motion numerically, first estimate a
value of { at y =0, and denote this state vector as ;e (0). With

this estimate, { (t)can be calculated by numerical solution of (L6).
Denote the value of { at y =2x, using Ce(o),aa §°(2x). 1r £, (0)

was correct, then
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¢, (2x) = ¢_ (0) (48)

because the blade motion is periodic over 0 < v < 2x. Of course,
condition (48) will seldom occur from the initial estimate., To
determine the correct initial c